Baroque Sacrarium
Барочные узоры жизни
Привет, Гость
  Войти…
Регистрация
  Сообщества
Опросы
Тесты
  Фоторедактор
Интересы
Поиск пользователей
  Дуэли
Аватары
Гороскоп
  Кто, Где, Когда
Игры
В онлайне
  Позитивки
Online game О!
  Случайный дневник
BeOn
Ещё…↓вниз
Отключить дизайн


Зарегистрироваться

Логин:
Пароль:
   

Забыли пароль?


 
yes
Получи свой дневник!

Baroque Sacrarium > Физика


Тесты c категорией "Физика".
Пользователи, сообщества c интересом "Физика".

вторник, 5 мая 2015 г.
Капитан Спок 09:42:55
Запись только для меня.
среда, 21 января 2015 г.
Хрестоматийные законы физики: что они означают и кто их придумал Капитан Спок 12:40:00
1. Закон Архимеда

­­

Закон кажется простым, но на самом деле не очевидно, что объекты одного объема испытывают одинаковую выталкивающую силу при погружении в воду. К примеру, на кубы из пробки и свинца будет действовать одинаковая выталкивающая сила, но при этом они будут вести себя по-разному. Это обусловлено соотношением выталкивающей силы и веса предмета. Закон Архимеда применяется во многих случаях, к примеру, он помогает нам понять принцип плавучести и считается основополагающим принципом гидростатики.

2. Закон Гука

­­

Сила упругости, возникающая в теле при его деформации, прямо пропорциональна величине этой деформации. Самый простой пример — пружинные весы. Стрелка весов показывает, насколько сжалась пружина, а так как сжатие пропорционально весу, получается, что стрелка показывает вес.

3. Закон Бернулли

­­

Закон является математическим выражением двух эффектов: 1) на глубине давление жидкости больше, так как давит жидкость, которая сверху; 2) жидкость под давлением, вытекая в область более низкого давления, ускоряется (например вода из шприца). То же верно и для газов. Если жидкость или газ протекают стационарно (без завихрений), то закон можно использовать для отдельных струй жидкости и получаются менее очевидные следствия: крыло самолета, близко идущие корабли.

4. Закон Дальтона

­­

Суть в том, что при умеренных давлениях газы очень разрежены, поэтому молекулы друг с другом почти не взаимодействуют и объем, занимаемый самими молекулами очень мал по сравнению с объемом, занимаемым газом.

5. Закон Фурье

­­

Математическое выражение простого закона: чем больше разность температур, тем быстрее передается тепло. Например, чем горячее предмет, тем быстрее он нагреет холодный предмет. Закон применяется во многих областях и объясняет, например, почему алмазы всегда холодные (у них высокая термальная проводимость). Он позволяет определить теплопроводность материалов, что необходимо в промышленности — например, для производства двигателей и термосов.


Категории: Физика, Наука
вторник, 22 июля 2014 г.
Вода не проводит электричество Капитан Спок 15:37:50
­­

Всем известно, что вода и электричество — весьма опасное сочетание. Однако сама по себе вода ток не проводит. Тогда почему вода считается хорошим проводником?

Чтобы в этом разобраться, нужно представить атом, который состоит из протонов, нейтронов и электронов. Соотношение нейтронов и электронов определяют заряд атома. Если число протонов больше, чем электронов, заряд положительный, если наоборот — отрицательный. Поскольку атомы стремятся к нейтральному заряду, они отдают или забирают электроны. При переходе электрона от отрицательно заряженного атома к атому с положительным зарядом образуется электрический ток.

Так как молекулы воды не имеют заряда, то и электричество они не проводят. Поэтому дистиллированная вода считается диэлектриком, то есть ток она не проводит. Однако такая вода встречается нечасто. Вся вода, которая течёт из-под крана, содержится в реках, озёрах и морях, — это минеральный раствор той или иной концентрации. В ней содержатся как положительно (кальций, магний, натрий, железо), так и отрицательно (хлор, сульфат, карбонат) заряженные частицы, поэтому такая вода хорошо проводит ток, и тем лучше, чем больше концентрация минеральных солей.


Категории: Наука, Физика
понедельник, 21 июля 2014 г.
10 ТЕОРЕТИЧЕСКИХ ЧАСТИЦ, КОТОРЫЕ МОГУТ ОБЪЯСНИТЬ ВСЕ Капитан Спок 12:56:41
­­

На протяжении веков человечество вгрызалось в гранит науки, пытаясь выяснить точный состав Вселенной. Древние греки первыми предположили существование атомов, которые, по их мнению, были мельчайшими частицами — «строительными блоками» всего сущего. На протяжении 1500 лет это было всем, что мы знали о материи. В 1897 году открытие электрона разрушило научный мир до руин. Оказалось, что точно так же, как молекулы состояли из атомов, атомы состоят из компонентов.
И чем глубже мы смотрели, тем больше ответов, казалось, утекает сквозь наши пальцы. Даже протоны и нейтроны — строительные блоки атомов — изготовлены из еще меньших частиц — кварков. Каждое открытие порождало больше вопросов. Состоит ли время и пространство из россыпей мельчайших частиц, которые даже невозможно увидеть? Возможно. Перед вами десять теоретических частиц, которые могут объяснить все. Если мы их найдем.

Страпельки
Начнем с чего-то, близкого к тому, что мы уже знаем — кварки. Насчитывается шесть типов кварков. «Верхние» и «нижние» кварки более распространены, из них состоят протоны и нейтроны. «Странные» кварки, с другой стороны, не так распространены. Когда странные кварки объединяются с верхними и нижними кварками в равных количествах, они создают частицу под названием «страпелька» (от «странный» и «капелька»). Страпельки — это тончайшие фрагменты, из которых состоит странная материя.
Согласно теории странной материи, страпельки образуются в природе, когда массивная нейтронная звезда — тяжелая коллапсирующая звезда — выдает столько давления, что электроны и протоны в ядре сливаются, а затем коллапсируют дальше в нечто вроде плотного кваркового пузыря, который мы называем странной материей. И хотя большие страпельки могут теоретически существовать за пределами центров звезд с высоким давлением, вероятнее всего, они уплыли от таких звезд в другие солнечные системы — включая нашу собственную.
Но опять же: если они существуют, большая страпелька может превратить ядро атома в другую страпельку, если столкнется с ним. Новая страпелька столкнется с другими ядрами, что вызовет цепную реакцию, пока вся материя на Земле не будет превращена в странную материю. На самом деле, подобные страхи были вызваны работой Большого адронного коллайдера, представителям которого удалось в свое время убедить людей в надуманности этого факта. Вряд ли они могли бы случайно создать страпельку, которая уничтожила бы планету.

Суперпартнеры
Теория суперсимметрии гласит, что у каждой частицы во Вселенной есть противоположная частица-близнец, известная как суперсимметричная частица, суперпартнер или счастица. Таким образом, у каждого кварка есть скварк, который разделяет с первым идеальную симметрию. У каждого фотона есть фотино. И так далее, пока ни одна из 61 известных элементарных частиц не останется без внимания. Что ж, если их так много, почему мы не обнаружили ни одну?
Есть такая теория: в физике элементарных частиц более тяжелые частицы распадаются быстрее, чем более легкие. Если образуется достаточно тяжелая частица, она сломается практически сразу после создания. Если предположить, что счастицы невероятно тяжелые, они должны разрушаться в мгновение ока, пока их суперпартнеры — частицы, которые мы наблюдаем — живут. Это может объяснить, почему во Вселенной наблюдается такой перевес темной материи — счастицы могут содержать темную материю и существовать в поле, которое для нас далеко и ненаблюдаемо.

Античастицы
Материя состоит из частиц — и точно так же антивещество состоит из античастиц. В этом есть здравый смысл. Античастицы обладают такой же массой, что и нормальные частицы, но противоположным зарядом и противоположным угловым моментом (спином). Похоже на суперсимметрию, но в отличие от частиц, античастицы ведут себя точно так же, как частицы, даже участвуют в создании антиэлементов вроде антиводорода. В принципе, на любую материю найдется антиматерия.
Во всяком случае, должна найтись. В этом-то и проблема — вокруг много материи, а антиматерии не нашли нигде. Только создали искусственным путем. За пределами Большого адронного коллайдера свободное антивещество не существует даже в теории.
Согласно теории Большого Взрыва, изначально было равное количество частиц и античастиц. Вся материя во Вселенной была создана в точке этого взрыва. По умолчанию, все антивещество должно было быть создано в то же время. Другая теория гласит, что в других частях Вселенной антивещество преобладает. Все, что мы видим, самые далекие звезды, состоят из материи. Но наша видимая Вселенная может быть лишь небольшим участком вселенной, где-то там могут быть целые звездные системы из антивещества.

Гравитоны
На данный момент античастицы представляют собой огромную проблему в современной теоретической физике элементарных частиц. Другой проблемой является гравитация. По сравнению с другими силами, например электромагнетизмом,­ гравитация — крайне слабая сила. Кроме того, она отлично работает на планетарном уровне — с помощью гравитации легко наблюдать другие звезды и планеты, но на молекулярном уровне ее практически невозможно уловить и там она творит несуразные вещи. В дополнение ко всему прочему, у гравитации нет частиц, которые ее переносят, вроде фотонов, которые переносят свет.
И тут появляется гравитон. Это теоретическая частица, которая должна уместить гравитацию в ту же модель, что и любую другую наблюдаемую силу. Поскольку гравитация оказывает слабое притяжение на каждый объект, вне зависимости от расстояния, она должна быть безмассовой. Но это не проблема — у фотонов нет массы, и они повсюду. Мы зашли так далеко, что можем даже определить точные параметры, которым должен соответствовать гравитон, поэтому если мы найдем частицу — любую частицу — удовлетворяющую этим параметрам, у нас будет гравитон.
Найти гравитон очень важно, поскольку сейчас общая теория относительности и квантовая физика несовместимы. Однако на определенных уровнях энергии, известных как масштабы Планка, гравитация перестает следовать правилам относительности и соскальзывает к квантовым правилам. Поэтому решение проблемы гравитации может быть ключом к единой теории.

Гравифотоны
Есть и другая теоретическая гравитационная частица, и она прекрасна чуть менее, чем полностью. Гравифотон — это частица, которая создается, когда гравитационное поле проявляется в пятом измерении. Она берет начало из теории Калуцы — Клейна, которая предлагает объединить электромагнетизм и гравитацию в одну силу при условии, что в пространстве-времен­и есть больше, чем пять измерений. Гравифотон обладал бы характеристиками гравитона, но также принимал бы свойства фотона и создавал то, что физики называют «пятой силой» (ну а вообще есть только четыре фундаментальных силы).
Другие теории утверждают, что гравифотон мог бы быть суперпартнером гравитона, но они отталкивались бы и притягивались одновременно. В теории, это могло бы создать эффект антигравитации. И это только в пятом измерении. Теория супергравитации тоже постулирует существование гравифотонов, но предлагает расширить количество измерений до… одиннадцати.

Преоны
Из чего состоят кварки? Для начала, давайте ознакомимся с масштабами. В ядре атома золота семьдесять девять протонов. Каждый протон состоит из трех кварков. Ширина ядра атома золота — примерно восемь фемтометров в поперечнике. Это восемь миллионных долей нанометра, а нанометр — это одна миллиардная от метра. Кварки очень маленькие, а преоны, в таком случае, должны быть настолько ничтожно малы, что их просто невозможно измерить современными методами.
Есть и другие слова, которые используются для описания теоретических строительных блоков кварков, включая примоны, субкварки, квинки и твидлы, но «преон» приняли лучше всех. И преоны — весьма важная часть теоретической физики, потому что на данный момент фундаментальной частицей остаются кварки. Если выяснится, что они состоят из других частей, это откроет путь к тысячам новых теорий. Например, одна из теорий гласит, что неуловимое антивещество во Вселенной на самом деле содержится в преонах, поэтому все вокруг обладает частичками антиматерии, которая заперта в этом всем. Согласно этой теории, и вы являетесь носителем антивещества — просто вы не сможете ее увидеть, потому что материя складывается из более крупных блоков.

Тахионы
Ничто не приближается к нарушению известных законов относительности ближе, чем тахион. Эта частица движется быстрее света, и если бы она существовала, фундаментальное ограничение скорости больше не было бы ограничено скоростью света. На самом деле, это означало бы, что скорость света стала бы центральной точкой — и по обе стороны от этой точки будут частицы, которые движутся бесконечно медленно (не движутся вообще), и тахионы, которые могут двигаться бесконечно быстро.
Как ни странно, их отношение к скорости света было бы зеркальным. Грубо говоря, когда обычная частица ускоряется, ее энергетические потребности увеличиваются. Чтобы прорвать барьер световой скорости, нужно бесконечное количество энергии. В случае с тахионом, чем медленнее он движется, тем больше энергии требует. Когда он замедляется и приближается к скорости света с другого конца, его энергетические требования приближаются к бесконечности. Но когда его скорость растет, и нужда в энергии уменьшается — ему не нужно энергии вообще, чтобы двигаться с бесконечной скоростью.
Представьте его как магнит — один магнит приклеен к стене, а другой у вас в руке. Когда вы соприкасаете одинаковые полюса магнитов, ваш магнит отталкивается. Чем ближе вы приближаете свой магнит, тем труднее вам нажимать. Теперь представьте, что по ту сторону стены есть другой магнит, который делает то же самое. Магнит на стене — это скорость света, а два других магнита — это тахионы и обычные частицы. Если бы даже тахион существовал, они всегда будут замкнуты по ту сторону ловушки, которую мы сами не можем обойти. Хотя технически они могут быть использованы для отправления сообщений в прошлое.

Струны
Почти все частицы, о которых мы рассказали, называются точечными частицами: кварки и фотоны существуют как одна точка — маленькая крошечная точечка — с нулевыми измерениями. Теория струн предполагает, что эти элементарные частицы — далеко не точки, а струны, одномерные нити частиц. По своей сути, теория струн — это некая «теория всего», которая хочет примирить гравитацию и квантовую физику. В теории струн — множество отдельных теорий, да и самих теорий струн тоже много. Из того, что нам сейчас известно, гравитация и квантовая механика не могут сосуществовать физически в одном пространстве — гравитация не работает на квантовом уровне.
Таким образом, в широком смысле, теория струн на самом деле представляет собой квантовую теорию гравитации. Для сравнения, струны могут заменить преоны в качестве строительных блоков для кварков, хотя на более высоких уровнях все останется прежним. И в теории струн струна может превратиться во что угодно в зависимости от формы, в которую сворачивается. Если струна остается открытой, она становится фотоном. Если концы одной струны замыкаются в петлю, она становится гравитоном. Примерно так же дерево может стать целой хижиной или флейтой.
Как мы отметили, теорий струн много, и каждая из них предсказывает различное число измерений. Большинство из этих теорий утверждает, что существует десять или одиннадцать измерений, а бозонно-струнная теория (или теория суперструн) утверждает, что измерений не меньше двадцати шести. В этих других измерениях гравитация обладает равной или большей силой относительно других фундаментальных сил, что объясняет слабость гравитации в наших трех пространственных измерениях.

Браны
Если вы действительно хотите получить объяснение гравитации, вам нужно углубиться в М-теорию, или мембранную теорию. Мембраны, или браны — это частицы, которые могут курсировать по нескольким измерениям. К примеру, 0-брана — это точечная брана, которая существует в нулевых измерениях как кварк. 1-брана обладает одним измерением — это струна. 2-брана — двухмерная мембрана и так далее. Многомерные браны могут обладать любыми размерами, что приводит к теории о том, что наша Вселенная — это одна большая брана с четырьмя измерениями. Эта брана — наша Вселенная — просто кусок многомерного пространства.
Что касается гравитации, наша четырехмерная брана просто не может содержать ее, поэтому энергия гравитации улетучивается в другие браны, в многомерное пространство; мы просто довольствуемся тем, что осталось, поэтому гравитация кажется такой слабой сравнительно с другими силами.
Разумеется, нетрудно додумать, что есть много бран, движущихся через пространство — бесконечных бран через бесконечное пространство. Отсюда рождаются теории мультивселенной и циклической вселенной. Согласно последней, вселенная подчиняется циклам: она расширяется из-за энергии Большого Взрыва, затем гравитация стягивает все в одну точку. Это стягивание порождает новый Взрыв, и так до бесконечности.

Частица Бога
Бозон Хиггса был обнаружен 14 марта 2013 года на Большом адронном коллайдере и после подтвержден, а за его находку присудили Нобелевскую премию. Впервые его существование было предсказано в 60-х годах. Это частица, которая дает массу другим частицам.
Бозон Хиггса родился из поля Хиггса и был предложен в качестве объяснения тому, почему некоторые частицы, которые должны обладать массой, фактически ею не обладают. Поле Хиггса — которое никто никогда не наблюдал — должно существовать во всей Вселенной и предоставлять силу, необходимую для того, чтобы частицы приобретали массу. Бозон Хиггса должен заполнить огромные пробелы в Стандартной модели, весьма популярной и объясняющей практически все (кроме гравитации, конечно).
Бозон Хиггса важен тем, что доказывает существование поля Хиггса и объясняет, как энергия внутри поля Хиггса может проявляться в виде массы. Также он важен, поскольку создает прецедент. До его обнаружения он был обычной теорией. У него была математическая модель, физические свойства, спин — все. Просто нужны были доказательства его существования. И мы его нашли.
И если мы смогли сделать это один раз, кто может поспорить, что любая из этих частиц не может быть реальной? Тахионы, страпельки, гравитоны — эти частицы могут полностью перевернуть нашу картину мира и приблизить нас к пониманию фундаментальных основ мира, в котором мы живем.


Категории: Наука, Физика
понедельник, 7 июля 2014 г.
Неразрешенные загадки науки Капитан Спок 12:25:04
Континентальный дрейф

Теория континентального дрейфа впервые была предложена в 1500 году и утверждала, что континенты дрейфуют относительно друг друга через океан. Позже она была усовершенствована в теорию тектоники плит, которая утверждала, что на дне океана есть тектонические плиты, которые медленно движутся, разделяя континенты и создавая океаны за миллионы лет. Тайна, однако, заключается в том, что именно вызывает движение этих плит. В дальнейшем также стало известно, что теория не объясняет полностью этот феномен. Некоторые полагают, что из-за необъяснимой природы силы движения тектонических плит континенты могли разделиться гораздо быстрее, чем за миллионы лет, благодаря катастрофе вроде мощного наводнения.

Вымирание мегафауны
Когда-то по земле ходили гигантские животные, например, шерстистый мамонт. Общее название таким животным — мегафауна. Мегафауна исчезла по большей части совсем недавно, в диапазоне десяти тысяч лет назад. И ученые не смогли выяснить наверняка, почему. В качестве основных причин выдвинули такие тезисы, как охота и изменение климата. Но те, кто стоит за изменение климата, не обладают серьезными доказательствами, чаще они ссылаются на то, что нет достаточного количества доказательств и для другого тезиса. Что касается охоты в качестве причины, ученые говорят, что даже если бы это было правдой, археология приводит слишком мало доказательств в пользу этого. Тайна остается неразрешенной и мы никак не можем понять, почему на самом деле вымерли гигантские животные.

Эффект Мпембы
Эффект Мпембы гласит, что кипящая вода, при определенных обстоятельствах, может не только замерзнуть, но и сделать это быстрее, чем холодная. Это явление, согласно свидетельствам, обнаружили еще в Древней Греции, хотя оно, по всей видимости, противоречит законам термодинамики. В 1969 году ученый по имени Мпемба провел опыты, доказавшие, что эффект реален, однако они оставили ученым больше вопросов, нежели ответов. В качестве причин такого явления приводили множество вариантов, но ни один из них не удовлетворил ученых. Возможно, когда-нибудь ученые решат и эту загадку, но пока результаты исследований только удручают.

Скорость света
Хотя ни одно исследование скорости света не опровергает теорию того, что скорость света максимальна, появляется все больше доказательств того, что это утверждение может быть некорректным. Некоторые утверждают, что темная энергия движется быстрее с течением времени. Другие полагают, что если теория Большого Взрыва верна, вселенная расширялась намного быстрее скорости света в своем зачаточном состоянии. Хотя до сих пор непонятно, можем ли мы обнаружить скорость, превышающую световую, наука движется вперед. Кто знает, возможно мы сломаем фундаментальные пределы.

Внетелесный опыт
Люди давным-давно сообщают о странных переживаниях, когда находятся близко к смерти, а иногда и в другие моменты, что их сознание покидает тело, хотя тела остаются живыми. Одна группа исследователей попыталась проверить эти утверждения. Ученые использовали виртуальную реальность и камеры, чтобы испытуемый касался виртуального тела и реального тела, а затем только реального. Люди были убеждены, что касались реального тела, хотя в действительности все было наоборот. Этот эксперимент породил предположение о том, что человеческие переживания внетелесного опыта могут быть более серьезными. Также ученые планируют изучать переживания в состоянии клинической смерти, используя различные механизмы, подобные вышеописанным. Важно точно понять, что это: иллюзия или сознание действительно покидает тело. На данный момент это остается загадкой.

Птицы, падающие с неба
Несколько лет назад в Арканзасе куча черных птиц попадала с неба. Тогда обвинили фейерверки, хотя и не особо хорошо проверили эту теорию. Вскоре после этого птицы попадали снова, и в этот раз фейерверки были ни при чем. В то же время, в том же штате, мертвыми оказались тысячи рыб. Хотя объяснений была масса, ни одно из них не дало точный ответ на вопрос, почему тысячи птиц падают с неба и в том же районе внезапно погибают тысячи рыб. Возможно, это просто совпадение, но очень странное.

Космический рев
Ученые пытались изучать юные звезды, но в 2006 году столкнулись с проблемой: загадочный шум, который мешает исследованию. Ученые так и не поняли, что его вызывает. Хотя звук не может путешествовать сквозь космос, могут радиоволны, но откуда? Что их издает? Более того, этот звук был в шесть раз громче, чем ожидалось. Ученые сумели выяснить, что эти радиоволны не принадлежат никаким из известных на данный момент, их источниками не являются юные звезды и не частицы нашей пыли.

Лунная иллюзия
Лунная иллюзия существовала давным-давно, еще во времена Аристотеля. Иллюзия проявляется в том, что Луна кажется большей, будучи близко к горизонту, нежели будучи в зените. В прошлом люди предполагали, что виной остается атмосферный эффект или физика, но эти варианты оказались несостоятельными. Другие предполагали, что виной являются такие принципы, как относительный размер или иллюзия расстояния, но ученые так и не нашли точного объяснения этой иллюзии. Современная наука бессильна.

Корпускулярно-волно­вой дуализм
Долгое время люди спорили на тему того, является ли свет волной или частицей, но спустя много лет исследований оказалось, что вещи куда сложнее, чем кажутся на первый взгляд. Исследования показали, что фотон может одновременно выступать как свет и как частица. Однако когда ученые решили посмотреть, как именно фотон выбирает форму волны или форму частицы, все пошло наперекосяк — фотон не слушался. Это одна из самых интересных загадок квантовой механики — эффект наблюдателя.

Происхождение жизни
Происхождение жизни и создание вселенной оставалось предметом дебатов и исследований на протяжении всей истории человечества. Некоторые ученые объясняют сотворение вселенной моделью Большого Взрыва, которую многие из нас учили в школе. Много исследований было проведено и на тему абиогенеза, который подразумевает появление органической жизни из неорганики как единственный способ создания жизни не из другой жизни. Несмотря на невероятный объем научных исследований, ни одно из них не было подтверждено наверняка, а возможно, никогда и не подтвердится. Во всяком случае, теория Большого Взрыва не так прекрасна, как хотелось бы, а что было до Большого Взрыва и что находится за пределами Вселенной — на эти вопросы теория ответов не дает.

Тем не менее сторонники теории разумного сотворения утверждают, что даже если Большой Взрыв и будет доказан, нет никаких доказательств того, что в какой-то из моментов создания Вселенной не вмешался Бог. Даже ученые признают, что может быть некая первопричина, флуктуация, «щелчок пальцами», которую, возможно, мы никогда не узнаем. В любом случае, Вселенная огромна, а значит где-то на ее задворках может быть другая жизнь, до которой мы можем не добраться никогда.


Категории: Наука, Физика
5 простых вопросов в физике, на которые до сих пор нет однозначного ответа Капитан Спок 11:30:39
1. Шаровая молния
Какова природа этого явления? Является ли шаровая молния самостоятельным объектом или подпитывается энергией извне? Все ли шаровые молнии имеют одну и ту же природу или существуют разные их типы?

2. Турбулентность
Можно ли создать теоретическую модель для описания статистики турбулентного потока? При каких условиях существует гладкое решение уравнений Навье — Стокса? Это, вероятно, последняя нерешённая проблема классической или ньютоновской физики.

3. Сверхновые
Каков точный механизм, посредством которого имплозии умирающих звёзд становятся взрывом?

4. Солнечная цикличность
Какова природа циклов солнечной активности; каков механизм обращений магнитного поля Солнца, Земли?

5. Размерность пространства-времен­и
Существуют ли в природе дополнительные измерения пространства-времен­и, кроме известных нам четырёх? Если да, то каково их количество?

Стоит помнить, что это лишь самые простые вопросы из большого количества вообще существующих вопросов различной сложности. Ученым и науке есть куда стремится и что разгадывать и мы должны это помнить, поскольку если не из нас, то в нашем окружении могут расти гении, способные решить эти задачи.


Категории: Наука, Физика
воскресенье, 6 июля 2014 г.
Астрономы проверили теорию Эйнштейна Капитан Спок 19:38:49
Ученые вновь подвергли проверке общую теорию относительности (ОТО), на этот раз в космологических масштабах. Как сообщается на сайте Королевского астрономического общества Великобритании, результаты измерений ученых находятся в превосходном соответствии с предсказаниями теории тяготения Эйнштейна.

В своих наблюдениях астрономы проанализировали более 600 тысяч галактик из базы BOSS проекта SDSS-III. Астрономы сравнивали теоретически полученные значения силы притяжения между галактиками, следующие из теории Эйнштейна, и наблюдаемые силы притяжения. Ученым впервые удалось провести такую масштабную проверку ОТО, точность измерений составила около шести процентов, что достаточно высоко для такого глобального наблюдения.

С момента создания ОТО в середине 1910-х годов теория подвергалась множеству тестов, среди первых — наблюдение отклоняющегося движения света при его прохождении около Солнца, гравитационное красное смещение и сдвиг орбиты Меркурия. Модификации, которым подвергалась ОТО, включали в себя, например, введение скалярных полей и дополнительных степенных слагаемых в уравнения Эйнштейна и до сих пор экспериментально не подтверждены.

ОТО основывается на пропорциональности инертной и гравитационной масс (коэффициент пропорциональности выбирается равным единице) и связывает эффекты гравитационного притяжения с четырехмерной неэвклидовой геометрией пространства-времен­и. В случае несильного гравитационного поля теория Эйнштейна приводит к закону всемирного тяготения Ньютона.

SDSS (Sloan Digital Sky Survey, Слоановский цифровой небесный обзор) — проект исследования изображений и излучения галактик и звезд. BOSS (Baryon Oscillation Spectroscopic Survey, Спектроскопический обзор барионных осцилляций) — проект в рамках SDSS для изучения расширения Вселенной. В его рамках проводятся наблюдения распределения масс галактик и квазаров, обусловленные акустическими барионными колебаниями.


Категории: Наука, Физика
пятница, 23 мая 2014 г.
Парадоксы Большого взрыва Капитан Спок 08:47:19
­­

Даже астрономы не всегда правильно понимают расширение Вселенной. Раздувающийся воздушный шар – старая, но хорошая аналогия расширения Вселенной. Галактики, расположенные на поверхности шара, неподвижны, но поскольку Вселенная расширяется, расстояние между ними возрастает, а размеры самих галактик не увеличиваются.

В июле 1965 г. ученые объявили об открытии явных признаков расширения Вселенной из более горячего и плотного исходного состояния. Они нашли остывающее послесвечение Большого взрыва – реликтовое излучение. С этого момента расширение и охлаждение Вселенной легло в основу космологии. Космологическое расширение позволяет понять, как формировались простые структуры и как они постепенно развивались в сложные. Спустя 75 лет после открытия расширения Вселенной многие ученые не могут проникнуть в его истинный смысл. Джеймс Пиблз (James Peebles), космолог из Принстонского университета, изучающий реликтовое излучение, писал в 1993 г. : «Мне кажется, что даже специалисты не знают, каково значение и возможности модели горячего Большого взрыва».

Известные физики, авторы учебников по астрономии и популяризаторы науки порою дают неверную или искаженную трактовку расширения Вселенной, которое легло в основу модели Большого взрыва. Что же мы имеем в виду, когда говорим, что Вселенная расширяется? Несомненно, сбивает с толку то обстоятельство, что теперь говорят об ускорении расширения, и это ставит нас в тупик.
­­

Что такое расширение?
Когда расширяется что-нибудь привычное, например, влажное пятно или Римская империя, то они становятся больше, их границы раздвигаются, и они начинают занимать больший объем в пространстве. Но Вселенная, похоже, не имеет физических ограничений, и ей некуда двигаться. Расширение нашей Вселенной очень похоже на надувание воздушного шара. Расстояния до далеких галактик увеличиваются. Обычно астрономы говорят, что галактики удаляются или убегают от нас, но не перемещаются в пространстве, как осколки «бомбы Большого взрыва». В действительности расширяется пространство между нами и галактиками, хаотически движущимися внутри практически неподвижных скоплений. Реликтовое излучение заполняет Вселенную и служит системой отсчета, подобной резиновой поверхности воздушного шара, по отношению к которой движение и может быть измерено.

Находясь вне шара, мы видим, что расширение его искривленной двухмерной поверхности возможно только потому, что она находится в трехмерном пространстве. В третьем измерении располагается центр шара, а его поверхность расширяется в окружающий его объем. Исходя из этого, можно было бы заключить, что расширение нашего трехмерного мира требует наличия у пространства четвертого измерения. Но согласно общей теории относительности Эйнштейна, пространство динамично: оно может расширяться, сжиматься и изгибаться.


Дорожная пробка
Вселенная самодостаточна. Не требуются ни центр, чтобы расширяться от него, ни свободное пространство с внешней стороны (где бы она ни находилась), чтобы туда расширяться. Правда, некоторые новейшие теории, такие как теория струн, постулируют наличие дополнительных измерений, но при расширении нашей трехмерной Вселенной они не требуются.

В нашей Вселенной, как и на поверхности воздушного шара, каждый объект отдаляется от всех остальных. Таким образом, Большой взрыв не был взрывом в пространстве, а скорее это был взрыв самого пространства, который не произошел в определенном месте и затем не расширялся в окружающую пустоту. Это произошло всюду одновременно.

­­Если представить, что мы прокручиваем киноленту в обратном порядке, то увидим, как все области Вселенной сжимаются, а галактики сближаются, пока не столкнутся все вместе в Большом взрыве, как автомобили в дорожной пробке. Но сопоставление тут не полное. Если бы речь шла о происшествии, то вы могли бы объехать затор, услышав сообщения о нем по радио. Но Большой взрыв был катастрофой, которую невозможно избежать. Это похоже на то, как если бы поверхность Земли и все дороги на ней смялись, но автомобили оставались бы прежнего размера. В конце концов машины столкнулись бы, и никакое сообщение по радио не помогло бы предотвратить это. Так же и Большой взрыв: он произошел повсеместно, в отличие от взрыва бомбы, который происходит в определенной точке, а осколки разлетаются во все стороны.

Теория Большого взрыва не дает нам информации о размере Вселенной и даже о том, конечна она или бесконечна. Теория относительности описывает, как расширяется каждая область пространства, но ничего не говорится о размере или форме. Иногда космологи заявляют, что Вселенная когда-то была не больше грейпфрута, но они имеют в виду лишь ту ее часть, которую мы сейчас можем наблюдать.

У обитателей туманности Андромеды или других галактик свои наблюдаемые вселенные. Наблюдатели, находящиеся в Андромеде, могут видеть галактики, которые недоступны нам, просто из-за того, что они немного ближе к ним; зато они не могут созерцать те, которые рассматриваем мы. Их наблюдаемая Вселенная тоже была размером с грейпфрут. Можно вообразить, что ранняя Вселенная была похожа на кучу этих фруктов, безгранично простирающуюся во всех направлениях. Значит, представление о том, что Большой взрыв был «маленьким», ошибочно. Пространство Вселенной безгранично. И как его ни сжимай, оно таковым и останется.


Быстрее света
Ошибочные представления бывают связаны и с количественным описанием расширения. Скорость, с которой увеличиваются расстояния между галактиками, подчиняется простой закономерности, выявленной американским астрономом Эдвином Хабблом (Edwin Hubble) в 1929 г. : скорость удаления галактики v прямо пропорциональна его расстоянию от нас d, или v = Hd. Коэффициент пропорциональности H называется постоянной Хаббла и определяет скорость расширения пространства как вокруг нас, так и вокруг любого наблюдателя во Вселенной.

Некоторых сбивает с толку то, что не все галактики подчиняются закону Хаббла. Ближайшая к нам крупная галактика (Андромеда) вообще движется к нам, а не от нас. Такие исключения бывают, поскольку закон Хаббла описывает лишь среднее поведение галактик. Но каждая из них может иметь и небольшое собственное движение, поскольку галактики гравитационно воздействуют друг на друга, как, например, наша Галактика и Андромеда. Отдаленные галактики также имеют небольшие хаотические скорости, но при большом расстоянии от нас (при большом значении d) эти случайные скорости ничтожно малы на фоне больших скоростей удаления (v). Поэтому для далеких галактик закон Хаббла выполняется с высокой точностью.

Согласно закону Хаббла, Вселенная расширяется не с постоянной скоростью. Некоторые галактики удаляются от нас со скоростью 1 тыс. км/с, другие, находящиеся вдвое дальше, со скоростью 2 тыс. км/с, и т.д. Таким образом, закон Хаббла указывает, что, начиная с некоторого расстояния, называемого хаббловским, галактики удаляются со сверхсветовой скоростью. Для измеренного значения постоянной Хаббла это расстояние составляет около 14 млрд. световых лет.

Но разве частная теория относительности Эйнштейна не утверждает, что никакой объект не может иметь скорость выше скорости света? Такой вопрос ставил в тупик многие поколения студентов. А ответ состоит в том, что частная теория относительности применима лишь к «нормальным» скоростям – к движению в пространстве. В законе Хаббла речь идет о скорости удаления, вызванного расширением самого пространства, а не движением в пространстве. Этот эффект общей теории относительности не подчиняется частной теории относительности. Наличие скорости удаления выше скорости света никак не нарушает частную теорию относительности. По-прежнему верно, что никто не может догнать луч света.
­­­­
­­­­

Растяжение фотонов
Первые наблюдения, показывающие, что Вселенная расширяется, были сделаны между 1910 и 1930 г. В лаборатории атомы испускают и поглощают свет всегда на определенных длинах волн. То же наблюдается и в спектрах далеких галактик, но со смещением в длинноволновую область. Астрономы говорят, что излучение галактики испытывает красное смещение. Объяснение простое: при расширении пространства световая волна растягивается и поэтому ослабевает. Если в течение того времени, пока световая волна дошла до нас, Вселенная расширилась вдвое, то и длина волны удвоилась, а ее энергия ослабла в два раза.

Процесс можно описать в терминах температуры. Испускаемые телом фотоны имеют распределение по энергии, которое в целом характеризуют температурой, указывающей, насколько тело горячее. Когда фотоны движутся в расширяющемся пространстве, они теряют энергию и их температура снижается. Таким образом, Вселенная при расширении охлаждается, как сжатый воздух, вырывающийся из баллона аквалангиста. К примеру, реликтовое излучение сейчас имеет температуру около 3 К, тогда как оно родилось при температуре около 3000 К. Но с того времени Вселенная увеличилась в размере в 1000 раз, а температура фотонов понизилась во столько же раз. Наблюдая газ в далеких галактиках, астрономы прямо измеряют температуру этого излучения в далеком прошлом. Измерения подтверждают, что Вселенная со временем охлаждается.

В связи между красным смещением и скоростью также существуют некоторые противоречия. Красное смещение, вызванное расширением, часто путают с более знакомым красным смещением, вызванным эффектом Доплера, который обычно делает звуковые волны более длинными, если источник звука удаляется. То же верно и для световых волн, которые становятся более длинными, если источник света отдаляется в пространстве.

Доплеровское красное смещение и космологическое красное смещение – вещи абсолютно разные и описываются различными формулами. Первая вытекает из частной теории относительности, которая не принимает во внимание расширение пространства, а вторая следует из общей теории относительности. Эти две формулы почти одинаковы для близлежащих галактик, но различаются для отдаленных.

Согласно формуле Доплера, если скорость объекта в пространстве приближается к скорости света, то его красное смещение стремится к бесконечности, а длина волны становится слишком большой и поэтому недоступной для наблюдения. Если бы это было верно для галактик, то самые отдаленные видимые объекты на небе удалялись бы со скоростью, заметно меньшей скорости света. Но космологическая формула для красного смещения приводит к другому выводу. В рамках стандартной космологической модели галактики с красным смещением около 1,5 (т.е. принимаемая длина волны их излучения на 50% больше лабораторного значения) удаляются со скоростью света. Астрономы уже обнаружили около 1000 галактик с красным смещением больше 1,5. А значит, нам известно около 1000 объектов, удаляющихся быстрее скорости света. Реликтовое излучение приходит с еще большего расстояния и имеет красное смещение около 1000. Когда горячая плазма молодой Вселенной испускала принимаемое нами сегодня излучение, она удалялась от нас почти в 50 раз быстрее скорости света.


Гипотеза усталости
Каждый раз, когда Scientific American публикует статью по космологии, многие читатели пишут нам, что, по их мнению, галактики на самом деле не удаляются от нас и что расширение пространства – иллюзия. Они полагают, что красное смещение в спектрах галактик вызвано чем-то вроде «утомления» от долгой поездки. Некий неизвестный процесс вынуждает свет, распространяясь сквозь пространство, терять энергию и поэтому краснеть.

Данной гипотезе уже более полувека, и на первый взгляд она выглядит разумной. Но она совершенно не согласуется с наблюдениями. Например, когда звезда взрывается как сверхновая, она вспыхивает, а затем тускнеет. Весь процесс длится примерно две недели у сверхновых того типа, который астрономы используют для определения расстояний до галактик. За этот период времени сверхновая излучает поток фотонов. Гипотеза усталости света говорит, что за время пути фотоны потеряют энергию, но наблюдатель все равно получит поток фотонов длительностью в две недели.

Однако в расширяющемся пространстве не только сами фотоны растягиваются (и поэтому теряют энергию), но и их поток также растягивается. Поэтому требуется более двух недель, чтобы все фотоны добрались до Земли. Наблюдения подтверждают такой эффект. Вспышка сверхновой в галактике с красным смещением 0,5 наблюдается три недели, а в галактике с красным смещением 1 – месяц.

Гипотеза усталости света противоречит также наблюдениям спектра реликтового излучения и измерениям поверхностной яркости далеких галактик. Пришло время отправить на покой «утомленный свет» (Чарльз Линевивер и Тамара Дэвис).
Сверхновые звезды, как эта в скоплении галактик в Деве, помогают измерять космическое расширение. Их наблюдаемые свойства исключают альтернативные космологические теории, в которых пространство не расширяется.


Бег на месте
Трудно поверить, что мы можем видеть галактики, движущиеся быстрее скорости света, однако это возможно из-за изменения скорости расширения. Вообразите луч света, идущий к нам с расстояния большего, чем расстояние Хаббла (14 млрд. световых лет). Он движется к нам со скоростью света относительно своего местоположения, но само оно удаляется от нас быстрее скорости света. Хотя свет устремляется к нам с максимально возможной скоростью, он не может угнаться за расширением пространства. Это напоминает ребенка, пытающегося бежать в обратную сторону по эскалатору. Фотоны на хаббловском расстоянии перемещаются с максимальной скоростью, чтобы оставаться на прежнем месте.

Можно подумать, что свет из областей, удаленных дальше расстояния Хаббла, никогда не сможет дойти до нас и мы его никогда не увидим. Но расстояние Хаббла не остается неизменным, поскольку постоянная Хаббла, от которой оно зависит, меняется со временем. Эта величина пропорциональна скорости разбегания двух галактик, деленной на расстояние между ними. (Для вычисления можно использовать любые две галактики.) В моделях Вселенной, согласующихся с астрономическими наблюдениями, знаменатель увеличивается быстрее числителя, поэтому постоянная Хаббла уменьшается. Следовательно, расстояние Хаббла растет. А раз так, свет, который первоначально не достигал нас, может со временем оказаться в пределах хаббловского расстояния. Тогда фотоны окажутся в области, удаляющейся медленнее скорости света, после чего они смогут добраться до нас.

­­

Однако галактика, пославшая свет, может продолжать удаляться со сверхсветовой скоростью. Таким образом, мы можем наблюдать свет от галактик, которые, как и прежде, всегда будут удаляться быстрее скорости света. Одним словом, хаббловское расстояние не фиксировано и не указывает нам границы наблюдаемой Вселенной.

А что в действительности отмечает границу наблюдаемого пространства? Здесь тоже происходит некая путаница. Если бы пространство не расширялось, то самый отдаленный объект мы могли бы наблюдать теперь на расстоянии около 14 млрд. световых лет от нас, т.е. на расстоянии, которое свет преодолел за 14 млрд. лет, прошедших с момента Большого взрыва. Но поскольку Вселенная расширяется, пространство, пересеченное фотоном, расширилось за время его пути. Поэтому текущее расстояние до самого удаленного из наблюдаемых объектов примерно втрое больше – около 46 млрд. световых лет.

Раньше космологи думали, что мы живем в замедляющейся Вселенной и поэтому можем наблюдать все больше и больше галактик. Однако в ускоряющейся Вселенной мы отгорожены границей, вне которой никогда не уви